PMT

STATISTICS (C) UNIT 1 TEST PAPER 2

- 15 observations are made of a variable X. Taking 10 as an assumed value for the mean, it is found that Σ (x 10) = 30 and Σ(x 10)² = 130.
 Find the mean and the standard deviation of the 15 values of X. [6]
- 2. The integers from 1 to 9 inclusive are written on nine cards, which are shuffled together. Three cards are then drawn at random. Find the probability that the numbers on these three cards are
 - (i) consecutive numbers,[3](ii) all even numbers.[3]
- 3. The performance figures for seven cars are summarised in the table :

Car	1	2	3	4	5	6	7
Maximum speed (km h^{-1})	120	200	235	195	150	180	210
Fuel consumption ($l / 100$ km)	4.33	7.52	9.38	7.95	4.88	5.35	6.67

Calculate Spearman's coefficient of rank correlation for this data. [4] The data for an eighth car was subsequently obtained. When this data was taken into account, the coefficient of rank correlation remained unchanged. Find the new value of Σd^2 , where d denotes the difference between the ranks of corresponding pairs of data items. [2]

4. Explain briefly what is meant by a discrete random variable. [1]
A family has 3 cats and 4 dogs. Two of the family's animals are to be chosen at random. The random variable *X* represents the number of dogs chosen.

P(X = x)
$$^{7}/_{7}$$
 [4]
) and Var(X). [4]

- (ii) Calculate E(X) and Var(X).
- A hurdler estimates that she has a 0.95 probability of clearing each hurdle in a race. Specify fully the distribution of
 - (a) *X*, the random variable representing the number of hurdles attempted up to and including the first failure, assuming that she continues until a failure occurs; [1]
 - (b) *Y*, the random variable representing the number of hurdles cleared altogether in a race with *n* hurdles.
- Q.5 continued on next page ...

PMT

5. continued ...

Find the probability that, in a race with 20 hurdles,

(i) she clears all 20,	[2]
(ii) the 15th hurdle is the first one she fails to clear,	[2]
(iii) she clears at least 18.	[3]

6. The marks obtained by ten students in a Geography test and a History test were as follows:

Student	A	В	С	D	E	F	G	H	Ι	J
Geography (x)	34	57	49	21	84	53	10	77	61	85
History (y)	40	49	55	40		71	39	47	65	73

(i) Given that $\Sigma y = 547$, calculate the mark obtained by student *E* in History. [1] Given further that $\Sigma x^2 = 34\,087$, $\Sigma y^2 = 31\,575$ and $\Sigma xy = 31\,342$, find

(ii) the product moment correlation coefficient between x and y,

- (iii) an equation of the regression line of y on x,
 - [3]
- (iv) an estimate of the History mark of student *K*, who scored 70 in Geography. [2]

(v) State, with a reason, whether you would expect your answer to part (iv) to be reliable. [2]

7. The stem-and-leaf diagram shows the values taken by a variable *X*.

Key :	1 2 means 12
1	1, 1, 2, 5, 6, 8, 9
2	0, 3, 4, 6, 7, 7, 9
3	1, 4, 5, 5, 8
4	0, 2, 6, 6, 9, 9
5	2, 3, 5, 7
6	0, 1

(i) Copy and complete the cumulative frequency table :

< 29

< 19

x

Frequency 7

[2]

[2]

(ii) On graph paper, indicating the scale clearly, construct a cumulative frequency graph for this data. [4]

< 39

< 49

< 59

< 69

- (iii) Use your graph to find estimates of the median, the quartiles and the 42nd percentile.Make your method clear. [5]
- (iv) On graph paper, showing your scale, construct a box-and-whisker plot for the data. [3]

STATISTICS 1 (C) TEST PAPER 2 : ANSWERS AND MARK SCHEME

1.	$\Sigma (x - 10) = 30$ Mean $= \frac{30}{15} + 10 = 2 + 10 = 12$		M1 A1
	$\Sigma (x - 10)^2 = 130$ $Var = \frac{130}{15} - 2^2 = 4.67$ s d = 2.16		M1 A1 M1 A1 6
2	(i) No of ways of drawing 3 cards = $9C3 = 84$		B1
2.	No. of consecutive triads = 7 ie 123 234 345 456 567 678 789		
	so P(consecutive) = $\frac{1}{12}$		M1 A1
	(ii) No of even triads = 4 so P(all even) = $\frac{1}{2}$		MIAIA1 6
3.	Ranks 1 5 7 4 2 3 6		
	1 5 7 6 2 3 4		B1
	d 0 0 0 2 0 0 2		B1
	$\Sigma d^2 = 8$ $r_s = 1 - \frac{48}{7 \times 48} = \frac{6}{7}$		M1 A1
	Now $1 - 6 \Sigma d^2 \div (8 \times 63) = \frac{6}{7}$ $\Sigma d^2 = 12$		M1 A1 6
4.	A quantity which can take only certain distinct values with fixed probabilities		B1
	(i) 2 animals : $7 \times 6 \div 2 = 21$ ways $x = 0 = 1 = 2$		M1 M1
	1 dog, 1 cat : $4 \times 3 = 12$ ways $P(X = x)^{-1/7} = \frac{1}{7}$		ALAI
	(11) $E(X) = 0/7$ $E(X) = 12/7$ $Var(X) = 12/7 - 01/49 = 20/49$		BIBIMIAI9
5.	(a) Geometric : $X \sim \text{Geo}(0.05)$ (b) Binomial : $Y \sim B(n, 0.95)$		B1 B1
	(i) $0.95^{20} = 0.358$ (ii) $0.95^{14} \times 0.05 = 0.0244$		M1 A1; M1 A1
	(iii) $P(Y > 18) = 1 - P(Y < 17) = 1 - 0.0755 = 0.925$		M1 A1 A1 9
6.	(i) $547 - 479 = 68$	B1	
	(ii) $\Sigma x = 531$		
	$S_{xx} = 5890.8$, $S_{yy} = 1654.1$, $S_{xy} = 2296.3$ $r = 0.736$	M1 A1	
	(iii) $y - 54.7 = (2296.3/5890.8)(x - 53.1) = 0.3898x - 20.699$	M1 A1	
	y = 0.390x + 34.0	A1	
	(iv) When $x = 70$, $y \approx 61.3$	M1 A1	
	(v) Nor very reliable, as value of r shows only moderate correlation	B1 B1	10
7.	(i) 7, 14, 19, 25, 29, 31 (ii) Graph drawn	B2; B4	
	(iii) Appropriate lines drawn Median ≈ 34 , $Q_1 \approx 20$, $Q_3 \approx 49$	M1 A1	A1 A1
	$0.42 \ge 31 = 13.0$, so 13th value, ≈ 27	A1	
	(iv) Box plot drawn	B3	14

PMT